ON AUTOMORPHISMS OF SOME FINITE p-GROUPS
نویسنده
چکیده
We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups of order p and prove that Autc(G) = Inn(G) for all the groups of order p 5 except two isoclinism families.
منابع مشابه
A Note on Absolute Central Automorphisms of Finite $p$-Groups
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملOn equality of absolute central and class preserving automorphisms of finite $p$-groups
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...
متن کاملON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE
Let G be a finite p-group and let Aut_l(G) be the group of absolute central automorphisms of G. In this paper we give necessary and sufficient condition on G such that each absolute central automorphism of G fixes the centre element-wise. Also we classify all groups of orders p^3 and p^4 whose absolute central automorphisms fix the centre element-wise.
متن کاملSome combinatorial aspects of finite Hamiltonian groups
In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...
متن کامل